Effects of blood flow on skin heating induced by millimeter wave irradiation in humans.
نویسندگان
چکیده
We have previously reported species differences in the rate of skin heating in response to millimeter wavelength microwave exposure. We hypothesized that these differences were predominantly a function of species differences in the ability to increase skin blood flow during local heating. Mathematical modeling also suggested that, in humans, the rate of skin heating during prolonged millimeter wavelength exposure would be dependent on skin blood flow. In order to empirically test this hypothesis, we determined the role of baseline skin blood flow on the rate of cutaneous heating induced by 94-GHz microwave energy in humans (3 female, 3 male) using infrared thermography and laser Doppler imaging to measure skin temperature and relative skin blood flow, respectively. Millimeter wavelength exposure intensities used were high power (HP), 1 W x cm(-2) for 4 s and low power, 175 mW cm(-2) for 180 s. Skin blood flow was (a) normal, (b) eliminated using a blood pressure cuff to occlude forearm blood flow, or (c) elevated by heating the skin prior to irradiation. Results showed that for the HP exposures, these manipulations did not influence the rate of skin heating. For the low power exposures, occlusion of baseline skin blood flow had a small impact on the subsequent rate of heating. In contrast, a two-fold elevation in baseline skin blood flow had a profound impact on the subsequent rate of heating, resulting in a substantially lower rate of heating. Occlusion of an elevated skin blood flow reversed this lower rate of heating. The results of these studies demonstrate that relatively small changes in skin blood flow may produce substantial alterations in the rate of skin heating during prolonged 94-GHz exposure.
منابع مشابه
Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: modeling and experimental results.
This study reports measurements of the skin surface temperature elevations during localized irradiation (94 GHz) of three species: rat (irradiated on lower abdomen), rhesus monkey (posterior forelimb), and human (posterior forearm). Two exposure conditions were examined: prolonged, low power density microwaves (LPM) and short-term, high power density microwaves (HPM). Temperature histories were...
متن کاملEffects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion
Many of today's radiofrequency-emitting devices in telecommunication, telemedicine, transportation safety, and security/military applications use the millimeter wave (MMW) band (30-300 GHz). To evaluate the biological safety and possible applications of this radiofrequency band for neuroscience and neurology, we have investigated the physiological effects of low-intensity 60-GHz electromagnetic...
متن کاملEffects of dielectric permittivities on skin heating due to millimeter wave exposure
BACKGROUND Because the possibility of millimeter wave (MMW) exposure has increased, public concern about the health issues due to electromagnetic radiation has also increased. While many studies have been conducted for MMW exposure, the effect of dielectric permittivities on skin heating in multilayer/heterogeneous human-body models have not been adequately investigated. This is partly due to t...
متن کاملMillimeter wave-induced modulation of calcium dynamics in an engineered skin co-culture model: role of secreted ATP on calcium spiking.
We have previously designed and characterized a 94 GHz exposure system that allows real-time monitoring of subcellular interactions induced by millimeter wave (MMW) stimulation. For example, studies of the calcium dynamics in neuronal cells in response to 94 GHz irradiation suggested that MMW stimulation increased calcium spiking. In this study, we engineered a 3D co-culture model that represen...
متن کاملAbbreviated Title: Millimeter wave irradiation of leech ganglion neurons
37 Many of today’s radiofrequency-emitting devices in telecommunication, telemedicine, 38 transportation safety, and security/military applications use the millimeter-wave (MMW) band 39 (30-300 GHz). To evaluate the biological safety and possible applications of this radiofrequency 40 band for neuroscience and neurology, we have investigated the physiological effects of low41 intensity 60 GHz e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Health physics
دوره 86 2 شماره
صفحات -
تاریخ انتشار 2004